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Proposition 0.1 (Exercise 15-1). Let M be a smooth manifold that is the union of two
orientable open submanifolds with connected intersection. Then M is orientable.

Proof. Let M = A∪B where A,B are orientable open submanifolds with A∩B connected.
Let OA be an orientation for A. If A∩B 6= ∅, choose p ∈ A∩B and let OB be an orientation
for B such that OBp = OAp ; if A ∩ B = ∅, then let OB be any orientation for B. Then OA
and OB induce orientations on A∩B, which is connected, so by Proposition 15.9, OAx = OBx
for x ∈ A ∩B. Then

OMx =

{
OAx x ∈ A
OBx x ∈ B

is well defined since they agree on the overlap. It is continuous since OA and OB are
continuous, using the Gluing Lemma. Thus OM is an orientation for M .

Corollary 0.2 (Exercise 15-1). Sn is orientable.

Proof. We can cover Sn with two open charts, the stereographic projection omitting the
north pole and its counterpart omitting the south pole. These charts are diffeomorphisms,
so Sn \ {N} is orientable by pulling back the standard orientation from Rn. Likewise,
Sn \ {S} is orientable. The charts have connected intersection, so by the above proposition
Sn is orientable.

Proposition 0.3 (Exercise 15-2). Let M be a smooth n-manifold. Then TM is orientable.

Proof. Let (Uα, φα) be a countable collection of smooth charts covering M . Let π : TM →M

be the canonical projection, and let (π−1(Uα), φ̃α) be the usual charts for TM (defined on

page 66 of Lee). We claim that the Jacobian determinant of the transition map φ̃β ◦ φ̃−1α is
positive for any α, β. Let (x1, . . . , xn) and (y1, . . . , yn) be coordinate functions for φα and
φβ respectively. Let p be a point in the domain of our transition map. Then we can write
v ∈ TpM as

v = vj
∂

∂xj

∣∣∣∣
p
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Then

φ̃β ◦ φ̃−1α (x1, . . . , xn, v1, . . . , vn) =

(
y1, . . . , yn, vj

∂y1

∂xj
, . . . , vj

∂yn

∂xj

)
If we denote φ̃β ◦ φ̃−1α by F , then the Jacobian of F is

∂F 1

∂x1
. . . ∂F 1

∂xn
∂F 1

∂v1
. . . ∂F 1

∂vn
...

. . .
...

...
. . .

...
∂Fn

∂x1
. . . ∂Fn

∂xn
∂Fn

∂v1
. . . ∂Fn

∂vn

∂Fn+1

∂x1
. . . ∂Fn+1

∂xn
∂Fn+1

∂v1
. . . ∂Fn+1

∂vn
...

. . .
...

...
. . .

...
∂F 2n

∂x1
. . . ∂F 2n

∂xn
∂F 2n

∂v1
. . . ∂F 2n

∂vn


=



∂y1

∂x1
. . . ∂y1

∂xn
0 . . . 0

...
. . .

...
...

. . .
...

∂yn

∂x1
. . . ∂yn

∂xn
0 . . . 0

0 . . . 0 ∂y1

∂x1
. . . ∂y1

∂xn
...

. . .
...

...
. . .

...

0 . . . 0 ∂yn

∂x1
. . . ∂yn

∂xn


This is just a block diagonal matrix with the Jacobian of the transition function φβ ◦ φ−1α
occuring twice, so the Jacobian determinant of φ̃β ◦ φ̃−1α is the square of the Jacobian deter-
minant of φβ ◦ φα−1. Since φβ ◦ φ−1α is a diffeomorphism, its Jacobian determinant is always
nonzero, so the square is always positive. Thus TM has a consistently oriented smooth atlas,
so by Proposition 15.6 in Lee, TM is orientable.

Proposition 0.4 (Exercise 15-2). Let M be a smooth n-manifold. Then T ∗M is orientable.

Proof. The argument is very similar to that for TM . Let (Uα, φα) be a countable covering

of M , π : T ∗M →M be the projection, and (π−1(Uα), φ̃α) be the usual charts on T ∗M :

φ̃α(ξi dx
i|p) = (φα(p), (ξ1, . . . , ξn))

As above, we will show that the Jacobian determinant of the transition map φ̃β ◦ φ̃−1α is
always positive. Let (x1, . . . , xn) and (y1, . . . , yn) be coordinate functions for φα and φβ
respectively. Let p be a point in the domain of our transition map. Then

φ̃β ◦ φ̃−1α (x1, . . . , xn, ξ1, . . . , ξn) =

(
y1, . . . , yn, ξj

∂y1

∂xj
, . . . , ξj

∂yn

∂xj

)
Thus the Jacobian of F = φ̃β ◦ φ̃−1α is

∂F 1

∂x1
. . . ∂F 1

∂xn
∂F 1

∂ξ1
. . . ∂F 1

∂ξn

...
. . .

...
...

. . .
...

∂Fn

∂x1
. . . ∂Fn

∂xn
∂Fn

∂ξ1
. . . ∂Fn

∂ξn

∂Fn+1

∂x1
. . . ∂Fn+1

∂xn
∂Fn+1

∂ξ1
. . . ∂Fn+1

∂ξn

...
. . .

...
...

. . .
...

∂F 2n

∂x1
. . . ∂F 2n

∂xn
∂F 2n

∂ξ1
. . . ∂F 2n

∂ξn


=



∂y1

∂x1
. . . ∂y1

∂xn
0 . . . 0

...
. . .

...
...

. . .
...

∂yn

∂x1
. . . ∂yn

∂xn
0 . . . 0

0 . . . 0 ∂y1

∂x1
. . . ∂y1

∂xn
...

. . .
...

...
. . .

...

0 . . . 0 ∂yn

∂x1
. . . ∂yn

∂xn


This is just a block diagonal matrix with the Jacobian of the transition function φβ ◦ φ−1α
occuring twice, so the Jacobian determinant of φ̃β ◦ φ̃−1α is the square of the Jacobian deter-
minant of φβ ◦ φα−1. Since φβ ◦ φ−1α is a diffeomorphism, its Jacobian determinant is always
nonzero, so the square is always positive. Thus T ∗M has a consistently oriented smooth
atlas, so by Proposition 15.6 in Lee, T ∗M is orientable.
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Proposition 0.5 (Exercise 16-2). Let T 2 = S1 × S1 ⊂ R4 denote the 2-torus, defined as

{(w, x, y, z) ∈ R4 : w2 + x2 = y2 + z2 = 1}

with the product orientation determined by the standard orientation on S1. Let

ω = xyz dw ∧ dy

Then ∫
T 2

ω = 0

Proof. We parametrize T 2 by F : (0, 2π)×(0, 2π)→ T 2 given by F (θ, φ) = (cos θ, sin θ, cosφ, sinφ).
Then F is an orientation preserving diffeomorphism, and the image of F contains all but a
set of measure zero. Using Proposition 16.8,∫

T 2

ω =

∫
(0,2π)×(0,2π)

F ∗ω

We first compute F ∗ω.

F ∗ω = F ∗(xyz dw ∧ dy) = sin θ cosφ sinφ d(cos θ) ∧ d(cosφ)

= sin2 θ cosφ sin2 φ dθ ∧ dφ

And now we can compute the integral.∫
T 2

ω =

∫ 2π

0

∫ 2π

0

sin2 θ cosφ sin2 φ dθdφ = 0

Since we can compute using the u-substition u = sinφ.∫ 2π

0

cosφ sin2 φ dφ =

∫
u2du =

sin3 φ

3

∣∣∣∣2π
0

= 0

Proposition 0.6 (Exercise 16-4). Let M be a compact oriented smooth n-manifold with
boundary. There is no continuous retract of M onto its boundary.

Proof. Suppose there is a continuous retract ψ : M → ∂M . Then by Theorem 6.26, ψ is
homotopic to a smooth map φ, so there is a smooth retract φ : M → ∂M¿. (That is, φ
is a smooth map with φ|∂M = id |∂M .) Let η be an orientation form on ∂M (so η is an
(n − 1)-form). Then φ∗η is a (n − 1)-form on M . Let ι : ∂M → M be the inclusion. Then
by Stokes’s Theorem∫

M

d(φ∗η) =

∫
∂M

ι∗(φ∗η) =

∫
∂M

(φ ◦ ι)∗η =

∫
∂M

η > 0

using Proposition 16.6(c). On the other hand, since η is a top degree form on ∂M , dη = 0,
so ∫

M

d(φ∗η) =

∫
M

φ∗(dη) = 0

This is a contradiction, so no such smooth retract exists. Hence no continuous retract exists,
since a continuous retract induces a smooth retract.
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Proposition 0.7 (Exercise 16-5). Let M,N be oriented, compact, connected, smooth mani-
folds and F,G : M → N be homotopic diffeomorphisms. Then F,G are either both orienta-
tion preserving or both orientation reversing.

Proof. By Theorem 6.29, since F,G are homotopic and both are smooth, there is a smooth
homotopy H : M × I → N with H(p, 0) = F (p) and H(p, 1) = G(p). (Note: I denotes the
unit interval [0, 1]). Let ω be an orientation form on N . Let ι : ∂(M × I) → M × I be the
inclusion. Then using Stokes’s Theorem,∫

M×I
d(H∗ω) =

∫
∂(M×i)

ι∗(H∗(ω)) (0.1)

First we simplify the LHS of (0.1). Since ω is an orientation form, dω = 0. Using the fact
that pullback commutes with the exterior derivative,

LHS =

∫
M×I

d(H∗ω) =

∫
M×I

H∗(dω) = 0

Now we simplify the RHS of (0.1).

RHS =

∫
∂M×I

ι∗(H∗ω)) =

∫
∂(M×I)

(H ◦ ι)∗ω

Note that ∂(M × I) consists of (M ×{0})∪ (M ×{1}), so we can split the integral into two.
After splitting it, we rewrite by unwinding the definition of pullback.

RHS =

∫
∂(M×I)

(H ◦ ι)∗ω =

∫
M×{0}

(H ◦ ι)∗ω +

∫
M×{1}

(H ◦ ι)∗ω

=

∫
M×{0}

ω(H ◦ ι(p, t)) +

∫
M×{1}

ω(H ◦ ι(p, t))

=

∫
M×{0}

ω(H(p, 0)) +

∫
M×{1}

ω(H(p, 1))

=

∫
M×{0}

ω(F (p)) +

∫
M×{1}

ω(G(p))

=

∫
M×{0}

F ∗ω(p, 0) +

∫
M×{1}

G∗ω(p, 1)

Now we would like to relate the quantities∫
M×{0}

F ∗ω(p, 0) and

∫
M

F ∗ω(p)

and similarly for G. It is clear that M × {0} is diffeomorphic to M , so these two integrals
are nearly identical, except that M × {0} may have a different orientation than M . Since
the orientation for M × {1} comes from appending the outward pointing vector field ∂

∂t

∣∣
p
,
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M×{1} has the same orientation as M . The orientation for M×{0} comes from appending
the outward pointing vector field − ∂

∂t

∣∣
p
, so M ×{0} has opposite orientation from M . Thus∫

M×{0}
F ∗ω(p, 0) =

∫
−M

F ∗ω(p) = −
∫
M

F ∗ω(p)∫
M×{1}

G∗ω(p, 0) =

∫
M

G∗ω(p)

Combining our computations for the RHS and LHS of (0.1), we have∫
M

F ∗ω =

∫
M

G∗ω

From this we can easily show that F,G must both be orientation preserving or both orien-
tation reversing. Suppose that F is orientation preserving and G is orientation reversing.
Then by Proposition 16.6(d), ∫

M

F ∗ω =

∫
N

ω = −
∫
M

G∗ω

which combined with our previous computation yields∫
N

ω = 0

This contradicts Proposition 16.6(c), so F andGmust have the same effect on the orientation.

Proposition 0.8 (Exercise 16-6). Let n be an integer and let Sn be the n-sphere embedded
in Rn+1. The following are equivalent:

1. n is odd.

2. There exists a nowhere-vanishing smooth vector field on Sn.

3. There exists a continuous map V : Sn → Sn satisfying V (x) ⊥ x (with respect to the
Euclidean dot product on Rn+1) for all x ∈ Sn.

4. The antipodal map α : Sn → Sn is homotopic to IdSn.

5. The antipodal map α : Sn → Sn is orientation preserving.

Proof. Problem 9-4 says that there exists a nowhere-vanishing vector field on Sn for n odd,
which gives (1) =⇒ (2). Problem 15-3 says that the antipodal map is orientation preserving
if and only if n is odd, which gives (1) ⇐⇒ (5). Problem 16-5 says that if α is homotopic to
IdSn then α is orientation preserving, since IdSn is obviously orientation preserving, so this
is (4) =⇒ (5). So we just need to show (2) =⇒ (3) and (3) =⇒ (4), then we will have

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (1)
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which shows that all are equivalent. First we show (2) =⇒ (3). Let Y be a nowhere-
vanishing smooth vector field on Sn. Then define V : Sn → Sn by

V (x) =
Yx
‖Yx‖

Since Yx is never the zero vector, it always has nonzero magnitude, and V (x) is always in
Sn because Yx

‖Yx‖ is a unit vector by contruction. V is continuous since Yx is a smooth vector

field. Since Yx is a vector field on Sn we have Yx ⊥ x, and hence V (x) ⊥ x. Thus (2)
=⇒ (3).

Now we show (3) =⇒ (4). Let α be the antipodal map and let V : Sn → Sn be a
continuous map so that V (x) ⊥ x for all x ∈ Sn. First, define H : Sn × [0, 1]→ Sn by

H(x, t) =
(1− t)α(x) + tV (x)

‖(1− t)α(x) + tV (x)‖

First, we need to check that the denominator is never zero. If it is, then

(1− t)(−x) + tV (x) = 0 =⇒ −x+ xt+ tV (x) = 0 =⇒ x = t(x+ V (x))

which says that x + V (x) is in the span of x. Since V (x) ⊥ x, this is impossible, so
H is well-defined. H is clearly continuous, as a composition of continuous functions, and
H(x, 0) = α(x) and H(x, 1) = V (x), so V is homotopic to α. Now define H̃ : Sn×[0, 1]→ Sn

by

H̃(x, t) =
(1− t)x+ tV (x)

‖(1− t)x+ tV (x)‖
As before, if the denominator is zero,

(1− t)x+ tV (x) = 0 =⇒ x− tx+ tV (x) = 0 =⇒ tx = x+ V (x)

which is impossible because V (x) ⊥ x. Thus H̃ is a homotopy from V to IdSn . Since
homotopy equivalence of maps is an equivalence relation, α is homotopic to IdSn . Thus
(3) =⇒ (4). This completes the chain of needed implications, so all the statements are
equivalent.

Corollary 0.9 (Hairy Ball Theorem). There exists a nowhere-vanishing smooth vector field
on Sn if and only if n is odd.

Proof. This is (1) ⇐⇒ (2) from the above proposition.
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