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Proposition 0.1 (Exercise 15-1). Let M be a smooth manifold that is the union of two
orientable open submanifolds with connected intersection. Then M is orientable.

Proof. Let M = AU B where A, B are orientable open submanifolds with A N B connected.
Let O be an orientation for A. If ANB # 0, choose p € AN B and let OF be an orientation
for B such that Of = (’);74; if AN B = 0, then let OF be any orientation for B. Then O4
and OF induce orientations on AN B, which is connected, so by Proposition 15.9, 04 = OF
for x € AN B. Then
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is well defined since they agree on the overlap. It is continuous since O4 and OF are
continuous, using the Gluing Lemma. Thus O™ is an orientation for M. m

Corollary 0.2 (Exercise 15-1). S™ is orientable.

Proof. We can cover S™ with two open charts, the stereographic projection omitting the
north pole and its counterpart omitting the south pole. These charts are diffeomorphisms,
so S™\ {N} is orientable by pulling back the standard orientation from R™. Likewise,
S™\ {S} is orientable. The charts have connected intersection, so by the above proposition
S™ is orientable. O

Proposition 0.3 (Exercise 15-2). Let M be a smooth n-manifold. Then TM is orientable.

Proof. Let (U,, ¢o) be a countable collection of smooth charts covering M. Let 7 : TM — M
be the canonical projection, and let (7=2(U,), ¢o) be the usual charts for TM (defined on
page 66 of Lee). We claim that the Jacobian determinant of the transition map (ZB o 5;1 is
positive for any a, 8. Let (z',...,2") and (y',...,9y") be coordinate functions for ¢, and
¢ respectively. Let p be a point in the domain of our transition map. Then we can write
v e T,M as
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If we denote ggﬁ e (Z;l by F', then the Jacobian of F'is
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This is just a block diagonal matrix with the Jacobian of the transition function ¢z o ¢ *

occuring twice, so the Jacobian determinant of ;5,6’ o 5;1 is the square of the Jacobian deter-
minant of ¢ 0 ¢pa~t. Since ¢go ¢, is a diffeomorphism, its Jacobian determinant is always
nonzero, so the square is always positive. Thus T'M has a consistently oriented smooth atlas,
so by Proposition 15.6 in Lee, T'M is orientable. O

Proposition 0.4 (Exercise 15-2). Let M be a smooth n-manifold. Then T*M is orientable.

Proof. The argument is very similar to that for TM. Let (U,, ¢,) be a countable covering
of M, w: T*M — M be the projection, and (71(U,), ¢o) be the usual charts on T*M:

Ga(& dz'l,) = (alp), (&1, .-, &)

As above, we will show that the Jacobian determinant of the transition map 55 o $;1 is
always positive. Let (z',...,z") and (y',...,y") be coordinate functions for ¢, and ¢z
respectively. Let p be a point in the domain of our transition map. Then
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Thus the Jacobian of F' = 55 o 5;1 is
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This is just a block diagonal matrix with the Jacobian of the transition function ¢z o ¢.*
occuring twice, so the Jacobian determinant of 55 o 5&1 is the square of the Jacobian deter-
minant of ¢ 0 ¢pa~t. Since ¢go ¢! is a diffeomorphism, its Jacobian determinant is always
nonzero, so the square is always positive. Thus T*M has a consistently oriented smooth
atlas, so by Proposition 15.6 in Lee, T*M is orientable. O



Proposition 0.5 (Exercise 16-2). Let T? = S x S C R* denote the 2-torus, defined as
{(w,z,y,2) € R* : w? + 22 = y* + 2% =1}
with the product orientation determined by the standard orientation on S'. Let

w=xyz dw A dy

/sz
T2

Proof. We parametrize T? by F : (0,27)x (0, 27) — T? given by F(6, ¢) = (cos 0, sin 6, cos ¢, sin ¢).
Then F' is an orientation preserving diffeomorphism, and the image of F' contains all but a
set of measure zero. Using Proposition 16.8,

/ w = / F*w
T2 (0,27) x (0,27)
We first compute F*w.

F*w = F*(zyz dw A dy) = sin cos ¢ sin ¢ d(cos ) A d(cos ¢)
= sin® @ cos ¢ sin? ¢ dO A do

Then

And now we can compute the integral.

2m 2m
/ w = / / sin? 0 cos ¢ sin® ¢ dfdep = 0
T2 o Jo

Since we can compute using the u-substition u = sin ¢.
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/ cos ¢sin? ¢ dp = /quu = SH; ¢
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Proposition 0.6 (Exercise 16-4). Let M be a compact oriented smooth n-manifold with
boundary. There is no continuous retract of M onto its boundary.

Proof. Suppose there is a continuous retract ¢» : M — OM. Then by Theorem 6.26, v is
homotopic to a smooth map ¢, so there is a smooth retract ¢ : M — OM,. (That is, ¢
is a smooth map with ¢|gsn; = id|sps.) Let 1 be an orientation form on M (so 71 is an
(n — 1)-form). Then ¢*nis a (n — 1)-form on M. Let ¢ : OM — M be the inclusion. Then
by Stokes’s Theorem

/J\4d(¢*n)_/aML*(¢*n)_/8M(¢OL)*77_/8M77>0

using Proposition 16.6(c). On the other hand, since 7 is a top degree form on oM, dn = 0,

’ /M d(¢™n) = /M ¢"(dn) =0

This is a contradiction, so no such smooth retract exists. Hence no continuous retract exists,
since a continuous retract induces a smooth retract. O



Proposition 0.7 (Exercise 16-5). Let M, N be oriented, compact, connected, smooth mani-
folds and F,G : M — N be homotopic diffeomorphisms. Then F,G are either both orienta-
tion preserving or both orientation reversing.

Proof. By Theorem 6.29, since F, G are homotopic and both are smooth, there is a smooth
homotopy H : M x I — N with H(p,0) = F(p) and H(p,1) = G(p). (Note: I denotes the
unit interval [0,1]). Let w be an orientation form on N. Let ¢ : (M x I) — M x I be the
inclusion. Then using Stokes’s Theorem,

/szd(H*w) _ /{Wm () o

First we simplify the LHS of (0.1). Since w is an orientation form, dw = 0. Using the fact
that pullback commutes with the exterior derivative,

LHS = / d(H*w) = H*(dw) =0
MxI MxI

Now we simplify the RHS of (0.1).

RHS = / V(H'w)) = / (Ho)w
OMxI O(MXI)

Note that (M x I) consists of (M x {0})U (M x {1}), so we can split the integral into two.
After splitting it, we rewrite by unwinding the definition of pullback.

RHS = / (Hot)'w = / (Hou)'w +/ (Hou)'w
(M xI) Mx{0} Mx{1}

:/]\/[X{O}W(Hob(p,t>)+/ w(H o u(p,t))

Mx{1}

:/Mx{o}w(H(p,O))—i-/ w(H(p,1))

Mx{1}

:/MX{O}QJ(F(])))—|‘/MX{1}W(G(p))

:/ F*w(p,O)—i—/ G*w(p, 1)
Mx{0} Mx{1}

Now we would like to relate the quantities

/ F*w(p,0)  and / F*w(p)
Mx{0} M

and similarly for G. It is clear that M x {0} is diffeomorphic to M, so these two integrals
are nearly identical, except that M x {0} may have a different orientation than M. Since
the orientation for M x {1} comes from appending the outward pointing vector field % b



M x {1} has the same orientation as M. The orientation for M x {0} comes from appending

the outward pointing vector field —2 SO M x {0} has opposite orientation from M. Thus
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/J\/[X{l} Gulp0) = /MG*W(Z?)

Combining our computations for the RHS and LHS of (0.1), we have

/F*w:/G*w
M M

From this we can easily show that F, G must both be orientation preserving or both orien-
tation reversing. Suppose that F' is orientation preserving and G is orientation reversing.

Then by Proposition 16.6(d),
/ F*w:/w:—/ G*'w
M N M

which combined with our previous computation yields

/w:()
N

This contradicts Proposition 16.6(c), so F' and G must have the same effect on the orientation.

[]

Proposition 0.8 (Exercise 16-6). Let n be an integer and let S™ be the n-sphere embedded
in R, The following are equivalent:

1. n is odd.
2. There exists a nowhere-vanishing smooth vector field on S™.

3. There ezists a continuous map V : S™ — S™ satisfying V(x) L x (with respect to the
FEuclidean dot product on R™1) for all x € S™.

4. The antipodal map o : S™ — S™ is homotopic to Idgn.
5. The antipodal map o : S™ — S™ is orientation preserving.

Proof. Problem 9-4 says that there exists a nowhere-vanishing vector field on S™ for n odd,
which gives (1) = (2). Problem 15-3 says that the antipodal map is orientation preserving
if and only if n is odd, which gives (1) <= (5). Problem 16-5 says that if a is homotopic to
Idg» then « is orientation preserving, since Idg» is obviously orientation preserving, so this
is (4) = (5). So we just need to show (2) = (3) and (3) = (4), then we will have

1) = (2 = B = (@) = 6 = 0
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which shows that all are equivalent. First we show (2) = (3). Let Y be a nowhere-
vanishing smooth vector field on S™. Then define V' : S™ — S™ by

Yo

Since Y is never the zero vector, it always has nonzero magnitude, and V (z) is always in
S™ because H’;—z” is a unit vector by contruction. V' is continuous since Y, is a smooth vector
field. Since Y, is a vector field on S™ we have Y, L z, and hence V(z) L z. Thus (2)
= (3).

Now we show (3) = (4). Let a be the antipodal map and let V' : 8™ — S™ be a
continuous map so that V(z) L x for all z € S™. First, define H : S™ x [0,1] — S™ by

(1 —=t)a(z) +tV(z)

H(z,t) = |(1 = t)a(z) + tV ()|

First, we need to check that the denominator is never zero. If it is, then
(1-t)(—2z)+tV(z) =0 = —z+at+tV(r) =0 = z=t(x+V(zx))

which says that x + V(z) is in the span of z. Since V(z) L z, this is impossible, so
H is well-defined. H is clearly continuous, as a composition of continuous functions, and
H(z,0) = a(x) and H(z,1) = V(z), so V is homotopic to a. Now define H : S" x [0, 1] — S™
by
~ 1—1t 1%
g = =02+ V(@)
(1 = t)z 4tV ()|

As before, if the denominator is zero,
(1-thr+tV(z)=0 = z—te+tV(z) =0 = tx =2+ V(x)

which is impossible because V(x) L x. Thus His a homotopy from V to Idgn. Since
homotopy equivalence of maps is an equivalence relation, « is homotopic to Idg.. Thus
(3) = (4). This completes the chain of needed implications, so all the statements are
equivalent. O

Corollary 0.9 (Hairy Ball Theorem). There exists a nowhere-vanishing smooth vector field
on S™ if and only if n is odd.

Proof. This is (1) <= (2) from the above proposition. O



